mandel_vecΒΆ
Calculate Mandelbrot set using NumbaPro (vectorized version)
from builtins import range
from numba import vectorize
from timeit import default_timer as timer
import numpy as np
import gr
sig = 'i8(uint32, f8, f8, f8, f8, uint32, uint32, uint32)'
@vectorize([sig], target='parallel')
def mandel(tid, min_x, max_x, min_y, max_y, width, height, iters):
pixel_size_x = (max_x - min_x) / width
pixel_size_y = (max_y - min_y) / height
x = tid % width
y = tid / width
real = min_x + x * pixel_size_x
imag = min_y + y * pixel_size_y
c = complex(real, imag)
z = 0.0j
ci = 0
inc = 1
for i in range(iters):
z = z * z + c
if (z.real * z.real + z.imag * z.imag) >= 4:
return ci
ci += inc
if ci == 0 or ci == 255:
inc = -inc
return 255
def create_fractal(min_x, max_x, min_y, max_y, width, height, iters):
tids = np.arange(width * height, dtype=np.uint32)
return mandel(tids, np.float64(min_x), np.float64(max_x), np.float64(min_y),
np.float64(max_y), np.uint32(height), np.uint32(width),
np.uint32(iters))
x = -0.9223327810370947027656057193752719757635
y = 0.3102598350874576432708737495917724836010
f = 0.5
for i in range(200):
start = timer()
pixels = create_fractal(x-f, x+f, y-f, y+f, 500, 500, 400)
dt = timer() - start
print("Mandelbrot created in %f s" % dt)
ca = 1000.0 + pixels.ravel()
gr.clearws()
gr.setviewport(0, 1, 0, 1)
gr.setcolormap(13)
gr.cellarray(0, 1, 0, 1, 500, 500, ca)
gr.updatews()
f *= 0.9